New applications of the two variable (G′/G, 1/G)-expansion method for closed form traveling wave solutions of integro-differential equations
نویسندگان
چکیده
منابع مشابه
Exact solutions for wave-like equations by differential transform method
Differential transform method has been applied to solve many functional equations so far. In this article, we have used this method to solve wave-like equations. Differential transform method is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Some examples are prepared to show theefficiency and simplicity of th...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملTraveling Wave Solutions For Two Non - linear Equations By ( G ′ G ) - expansion method
Abstract: In this paper, we study the application of the known generalized (G ′ G )-expansion method for seeking more exact travelling solutions solutions and soliton solutions of the Kaup-Kupershmidt equation and the (2+1) dimensional breaking soliton equation. As a result, we come to the conclusion that the traveling wave solutions for the two non-linear equations are obtained in three arbitr...
متن کاملSome New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari's inequality. A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Ocean Engineering and Science
سال: 2019
ISSN: 2468-0133
DOI: 10.1016/j.joes.2019.03.001