New Bootstrap Method for Autoregressive Models
نویسندگان
چکیده
منابع مشابه
Bootstrap Prediction Intervals for Threshold Autoregressive Models
This paper proposes the use of prediction intervals based on bootstrap for threshold autoregressive models. We consider four bootstrap methods to account for the variability of estimated threshold values, correct the bias of autoregressive coefficients and allow for heterogenous errors. Simulation shows that bootstrap prediction intervals generally perform better than classical prediction inter...
متن کاملBootstrap procedures for sequential change point analysis in autoregressive models
We compare numerically the behavior of several bootstrap procedures for monitoring changes in the error distribution of autoregressive time series. The proposed procedures include classical approaches based on the empirical distribution function as well as Fourier-type methods which utilize the empirical characteristic function, both functions being computed on the basis of properly estimated r...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولBootstrap prediction intervals for autoregressive time series
This paper is concerned with the calculation of interval forecasts for highly-persistent autoregressive (AR) time series using the bootstrap. Three methods are considered for countering the small-sample bias of least squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy-Fuller estimator in place of OLS; and the u...
متن کاملBootstrap prediction regions for multivariate autoregressive processes
Riassunto: L’obiettivo del presente lavoro è studiare il comportamento di una nuova procedura per la determinazione di regioni di previsione per processi autoregressivi multidimensionali. Le regioni di previsione, basate sulla tecnica bootstrap, non fanno affidamento su alcuna assunzione distributiva per i disturbi ed inoltre tengono conto della variabilità derivante dalla necessità di stimare ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2013
ISSN: 2287-7843
DOI: 10.5351/csam.2013.20.1.085