New examples of obstructions to non-negative sectional curvatures in cohomogeneity one manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-negatively Curved Cohomogeneity One Manifolds

Non-negatively Curved Cohomogeneity One Manifolds Chenxu He Prof. Wolfgang Ziller, Advisor A Riemannian manifold M is called cohomogeneity one if it admits an isometric action by a compact Lie group G and the orbit space is one dimension. Many new examples of non-negatively curved manifolds were discovered recently in this category. However not every cohomogeneity one manifold carries an invari...

متن کامل

Examples of Riemannian Manifolds with Non-negative Sectional Curvature

Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...

متن کامل

Examples of Manifolds with Non-negative Sectional Curvature

Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...

متن کامل

Cohomogeneity One Einstein-sasaki 5-manifolds

We consider hypersurfaces in Einstein-Sasaki 5-manifolds which are tangent to the characteristic vector field. We introduce evolution equations that can be used to reconstruct the 5-dimensional metric from such a hypersurface, analogous to the (nearly) hypo and half-flat evolution equations in higher dimensions. We use these equations to classify Einstein-Sasaki 5-manifolds of cohomogeneity one...

متن کامل

On Sectional Curvatures of (ε)-Sasakian Manifolds

The index of a metric plays significant roles in differential geometry as it generates variety of vector fields such as space-like, time-like, and light-like fileds. With the help of these vector fields, we establish interesting properties on ( )-Sasakian manifolds, which was introduced by Bejancu and Duggal [1] and further investigated by Xufeng and Xiaoli [2]. Since Sasakian manifolds with in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2014

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2014-06194-1