New Gradient-Weighted Adaptive Gradient Methods With Dynamic Constraints
نویسندگان
چکیده
منابع مشابه
Gradient Methods with Adaptive Step-Sizes
Motivated by the superlinear behavior of the Barzilai-Borwein (BB) method for two-dimensional quadratics, we propose two gradient methods which adaptively choose a small step-size or a large step-size at each iteration. The small step-size is primarily used to induce a favorable descent direction for the next iteration, while the large step-size is primarily used to produce a sufficient reducti...
متن کاملGradient Convergence in Gradient methods with Errors
We consider the gradient method xt+1 = xt + γt(st + wt), where st is a descent direction of a function f : �n → � and wt is a deterministic or stochastic error. We assume that ∇f is Lipschitz continuous, that the stepsize γt diminishes to 0, and that st and wt satisfy standard conditions. We show that either f(xt) → −∞ or f(xt) converges to a finite value and ∇f(xt) → 0 (with probability 1 in t...
متن کاملA stochastic gradient adaptive filter with gradient adaptive step size
This paper presents an adaptive step-size gradient adaptive filter. The step size of the adaptive filter is changed according to a gradient descent algorithm designed to reduce the squared estimation error during each iteration. An approximate analysis of the performance of the adaptive filter when its inputs are zero mean, white, and Gaussian and the set of optimal coefficients are time varyin...
متن کاملAdaptive Step-Size for Policy Gradient Methods
In the last decade, policy gradient methods have significantly grown in popularity in the reinforcement–learning field. In particular, they have been largely employed in motor control and robotic applications, thanks to their ability to cope with continuous state and action domains and partial observable problems. Policy gradient researches have been mainly focused on the identification of effe...
متن کاملWeak-duality Based Adaptive Finite Element Methods for Pde-constrained Optimization with Pointwise Gradient State-constraints
Adaptive finite element methods for optimization problems for second order linear elliptic partial differential equations subject to pointwise constraints on the `-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3002590