NH4V3O8 Rectangular Nanotube: A Novel High-Performance Cathode Material for Lithium Ion Batteries
نویسندگان
چکیده
The morphology and nanosize of cathode materials play a crucial role in the improved electrochemical properties electrode material for lithium ion batteries. Herein, we report synthesis novel NH4V3O8 rectangular nanotube via facile one-pot solvothermal protocol with use mixing solvent containing glycerol, ethanol, ethylene glycol. evolution as-prepared from addition different solvents has been systematically investigated. these are closely related to their structure. Compared other synthesized counterparts three morphologies (nanoparticle, ultra-small nanoparticle, hierarchical microsheet), resultant exhibited high reversible capacity maximum discharge 253.8 mAh g−1at 15 mA g−1, retention rate is 75% after 50 cycles. This work reveals relationship between performance provides feasible method high-performance materials.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملSuperior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
Graphene-wrapped lithium-excess layered hybrid materials (Li(2)MnO(3)·LiMO(2), M = Mn, Ni, Co, hereafter abbreviated as LMNCO) have been synthesized and investigated as cathode materials for lithium-ion batteries. Cyclic voltammetry measurement shows a significant reduction of the reaction overpotential in benefit of the graphene conducting framework. The electrochemical impedance spectroscopy ...
متن کاملA Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries
We report a simple and efficient approach for fabrication of novel graphene-polysulfide (GPS) anode materials, which consists of conducting graphene network and homogeneously distributed polysulfide in between and chemically bonded with graphene sheets. Such unique architecture not only possesses fast electron transport channels, shortens the Li-ion diffusion length but also provides very effic...
متن کاملSpinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries
DOI: 10.1002/aenm.201600922 considering the overpotential during charge process. Recently, Yamada et al. reported that LiNi0.5Mn1.5O4 can only reversibly provide capacity of ≈75 mA h g−1 in the more concentrated hydrate melt electrolytes (≈30 mol kg−1), which is 50% of theoretical capacity.[14] The oxygen evolution side reaction also largely significantly reduce the coulombic efficiency. In add...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics A
سال: 2021
ISSN: ['1432-0630', '0947-8396']
DOI: https://doi.org/10.1007/s00339-021-04325-y