Nodal solutions with a prescribed number of nodes for the Kirchhoff-type problem with an asymptotically cubic term

نویسندگان

چکیده

Abstract In this article, we study the following Kirchhoff equation: (0.1) − stretchy="false">( a + b ‖ ∇ u L 2 ( R 3 ) stretchy="false">) mathvariant="normal">Δ V ∣ x = f width="0.1em" in width="0.33em" , -(a+b\Vert \nabla u{\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2})\Delta u+V\left(| x| )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}, where xmlns:m="http://www.w3.org/1998/Math/MathML"> > 0 a,b\gt 0 , V is a positive radial potential function, and f\left(u) an asymptotically cubic term. The nonlocal term b\Vert }_{{L}^{2}\left({{\mathbb{R}}}^{3})}^{2}\Delta u 3-homogeneous in sense that t tu{\Vert \left(tu)={t}^{3}b\Vert so it competes complicatedly with which totally different from super-cubic case. By using Miranda theorem classifying domain partitions, via gluing method variational method, prove for each integer k k equation has nodal solution U 4 {U}_{k,4}^{b} exactly 1 k+1 domains. Moreover, show energy of strictly increasing any sequence { n } → \left\{{b}_{n}\right\}\to {0}_{+}, up to subsequence, {U}_{k,4}^{{b}_{n}} converges strongly {U}_{k,4}^{0} H {H}^{1}\left({{\mathbb{R}}}^{3}) also domains solves classical Schrödinger − . -a\Delta )u=f\left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}. Our results extend ones Deng et al. case

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

positive solutions for asymptotically periodic kirchhoff-type equations with critical growth

in this paper‎, ‎we consider the following kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$uin h^{1}(mathbb{r}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎the aim of this paper is to study the existence of positive ...

متن کامل

Infinite solutions having a prescribed number of nodes for a Schrödinger problem

*Correspondence: [email protected] School of Mathematics and Computer Sciences, Fujian Normal University, Fuzhou, 350007, P.R. China Abstract In this paper, we are concerned with the multiplicity of solutions for a Schrödinger problem. A weaker super-quadratic assumption is required for the nonlinearity. Then we give a new proof for the infinite solutions to the problem, having a prescribed ...

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2023

ISSN: ['2191-950X', '2191-9496']

DOI: https://doi.org/10.1515/anona-2022-0323