Noetherian rings of dimension one are pole assignable

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On co-Noetherian dimension of rings

We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This  is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...

متن کامل

Noetherian Rings—Dimension and Chain Conditions

In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime i...

متن کامل

on co-noetherian dimension of rings

we define and studyco-noetherian dimension of rings for which the injective envelopeof simple modules have finite krull-dimension. this  is a moritainvariant dimension that measures how far the ring is from beingco-noetherian. the co-noetherian dimension of certain rings,including commutative rings, are determined. it is shown that the class ${mathcal w}_n$ of rings with co-noetherian dimension...

متن کامل

Two-dimensional projectively-tameness over Noetherian domains of dimension one

In this paper all coordinates in two variables over a Noetherian Q-domain of Krull dimension one are proved to be projectively tame. In order to do this, some results concerning projectively-tameness of polynomials in general are shown. Furthermore, we deduce that all automorphisms in two variables over a Noetherian reduced ring of dimension zero are tame.

متن کامل

Fully Bounded Noetherian Rings

Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1988

ISSN: 0022-4049

DOI: 10.1016/0022-4049(88)90020-5