NON-ITERATIVE COMPUTATION SCHEME FOR NONLINEAR DYNAMIC FINITE ELEMENT METHOD

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of a Multilevel Iterative Method for Nonlinear Finite Element Equations*

The multilevel iterative technique is a powerful technique for solving the systems of equations associated with discretized partial differential equations. We describe how this technique can be combined with a globally convergent approximate Newton method to solve nonlinear partial differential equations. We show that asymptotically only one Newton iteration per level is required; thus the comp...

متن کامل

Analysis of a Multilevel Iterative Method for Nonlinear Finite Element Equations

The multilevel iterative technique is a powerful technique for solving systems of equations associated with discretized partial diierential equations. We describe how this techniques can be combined with a globally con-vergent approximate Newton method to solve nonlinear partial diierential equations. We show that asymptotically only one Newton iteration per level is required; thus the complexi...

متن کامل

An Iterative Method for Finite-Element Solutions of the Nonlinear Poisson-Boltzmann Equation

A finite-element approach combined with an efficient iterative method have been used to provide a numerical solution of the nonlinear Poisson-Boltzmann equation. The iterative method solves the nonlinear equations arising from the FE discretization procedure by a node-by-node calculation. The performance of the proposed method is illustrated by applying it to the problem of two identical colloi...

متن کامل

Iterative Solvers for the Stochastic Finite Element Method

This paper presents an overview and comparison of iterative solvers for linear stochastic partial differential equations (PDEs). A stochastic Galerkin finite element discretization is applied to transform the PDE into a coupled set of deterministic PDEs. Specialized solvers are required to solve the very high-dimensional systems that result after a finite element discretization of the resulting...

متن کامل

An Iterative Finite Element Method for Elliptic Eigenvalue Problems

We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Doboku Gakkai Ronbunshu

سال: 1995

ISSN: 0289-7806,1882-7187

DOI: 10.2208/jscej.1995.507_137