Non-oscillatory central differencing for hyperbolic conservation laws
نویسندگان
چکیده
منابع مشابه
Non-oscillatory Central Differencing for Hyperbolic Conservation Laws
Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the “direction of the wind.” Instead, we propose to use as a building block the mor...
متن کاملNon-oscillatory Central Differencing for Hyperbolic Conservation Laws Haim Nessyahu and Eitan Tadmor
Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind di erencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the eld-byeld decomposition which is required in order to identify the \direction of the wind." Instead, we propose to use as a building block the more robu...
متن کاملNon-oscillatory Central Schemes for 3D Hyperbolic Conservation Laws
We present a family of high-resolution, semi-discrete central schemes for hyperbolic systems of conservation laws in three space dimensions. The proposed schemes require minimal characteristic information to approximate the solutions of hyperbolic conservation laws, resulting in simple black box type solvers. Along with a description of the schemes and an overview of their implementation, we pr...
متن کاملNew non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws
We discuss an extension of the Jiang–Tadmor and Kurganov–Tadmor fully-discrete non-oscillatory central schemes for hyperbolic systems of conservation laws to unstructured triangular meshes. In doing so, we propose a new, ‘‘genuinely multidimensional,” non-oscillatory reconstruction—the minimum-angle plane reconstruction (MAPR). The MAPR is based on the selection of an interpolation stencil yiel...
متن کاملA New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws
We propose a new fourth-order non-oscillatory central scheme for computing approximate solutions of hyperbolic conservation laws. A piecewise cubic polynomial is used for the spatial reconstruction and for the numerical derivatives we choose genuinely fourth-order accurate non-oscillatory approximations. The solution is advanced in time using natural continuous extension of Runge-Kutta methods....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 1990
ISSN: 0021-9991
DOI: 10.1016/0021-9991(90)90260-8