Non-self-adjoint sturm-liouville operators with matrix potentials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral loci of Sturm–Liouville operators with polynomial potentials

We consider differential equations −y+P (z, a)y = λy, where P is a polynomial of the independent variable z depending on a parameter a. The spectral locus is the set of (a, λ) such that the equation has a non-trivial solution tending to zero on two fixed rays in the complex plane. We study the topology of the spectral loci for polynomials P of degree 3 or 4 with respect to z. MSC: 81Q05, 34M60,...

متن کامل

Inverse spectral theory for Sturm-Liouville operators with distributional potentials

We discuss inverse spectral theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type τf = 1 r ( − ( p[f ′ + sf ] )′ + sp[f ′ + sf ] + qf ) , where the coefficients p, q, r, s are Lebesgue measurable on (a, b) with p−1, q, r, s ∈ Lloc((a, b); dx) and real-valued with p 6= 0 and r > 0 almost everywhere on (a, ...

متن کامل

Weyl–titchmarsh Theory for Sturm–liouville Operators with Distributional Potentials

We systematically develop Weyl–Titchmarsh theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type τf = 1 r ( − ( p[f ′ + sf ] )′ + sp[f ′ + sf ] + qf ) , where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a, b), with p 6= 0, r > 0 a.e. on (a, b), and p−1, q, r, s ∈ Lloc((a, b); dx...

متن کامل

Eigenvalue Asymptotics for Sturm–liouville Operators with Singular Potentials

We derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued potentials from the space W 2 (0, 1), α ∈ [0, 1], and Dirichlet or Neumann–Dirichlet boundary conditions. We also give application of the obtained results to the inverse spectral problem of recovering the potential by these two spectra.

متن کامل

Random Sturm-Liouville operators

Selfadjoint Sturm-Liouville operators Hω on L2(a, b) with random potentials are considered and it is proven, using positivity conditions, that for almost every ω the operator Hω does not share eigenvalues with a broad family of random operators and in particular with operators generated in the same way as Hω but in L2(ã, b̃) where (ã, b̃) ⊂ (a, b).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Notes

سال: 2007

ISSN: 0001-4346,1573-8876

DOI: 10.1134/s0001434607030200