Nonequilibrium quantum impurity problems via matrix-product states in the temporal domain

نویسندگان

چکیده

Describing a quantum impurity coupled to one or more non-interacting fermionic reservoirs is paradigmatic problem in many-body physics. While historically the focus has been on equilibrium properties of impurity-reservoir system, recent experiments with mesoscopic and cold-atomic systems enabled studies highly non-equilibrium models, which require novel theoretical techniques. We propose an approach analyze dynamics based matrix-product state (MPS) representation Feynman-Vernon influence functional (IF). The efficiency such MPS rests moderate value temporal entanglement (TE) entropy IF, viewed as fictitious "wave function" time domain. obtain explicit expressions this wave function for family one-dimensional reservoirs, scaling TE evolution different reservoir's initial states. states short-range correlations we find area-law scaling, Fermi-sea-type yield logarithmic time, closely related real-space critical 1d systems. Furthermore, describe efficient algorithm converting form reservoirs' IF form. Once encoded by MPS, arbitrary correlation functions interacting can be efficiently computed, irrespective its internal structure. introduced here applied number experimental setups, including transport via dots real-time formation correlations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chebyshev expansion for impurity models using matrix product states

Martin Ganahl,1,* Patrik Thunström,2 Frank Verstraete,3,4 Karsten Held,2 and Hans Gerd Evertz1 1Institut für Theoretische Physik, Technische Universität Graz, 8010, Graz, Austria 2Institute of Solid State Physics, Vienna University of Technology, 1040, Vienna, Austria 3Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria 4Department of Physics and Astronomy, Ghent U...

متن کامل

Solving nonequilibrium dynamical mean-field theory using matrix product states

F. Alexander Wolf,1 Ian P. McCulloch,2 and Ulrich Schollwöck1 1Theoretical Nanophysics, Arnold Sommerfeld Center for Theoretical Physics, LMU Munich, Theresienstrasse 37, 80333 München, Germany 2Centre for Engineered Quantum Systems, School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia (Received 13 October 2014; revised manuscript received 27 November ...

متن کامل

Quantum Machine Learning Matrix Product States

Matrix product states minimize bipartite correlations to compress the classical data representing quantum states. Matrix product state algorithms and similar tools—called tensor network methods—form the backbone of modern numerical methods used to simulate many-body physics. Matrix product states have a further range of applications in machine learning. Finding matrix product states is in gener...

متن کامل

Continuous matrix product states for quantum fields.

We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows us to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.

متن کامل

Matrix product states for quantum metrology.

We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in the asymptotic limit of a large number of probes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2023

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.107.195101