Nonlinear Chebyshev approximation by H-polynomials
نویسندگان
چکیده
منابع مشابه
Approximation of ECG Signals using Chebyshev Polynomials
The ECG (Electrocardiogram) signal represents electrical activity of heart and is recorded for monitoring and diagnostic purpose. These signals are corrupted by artifacts during acquisition and transmission predominantly by high frequency noise due to power line interference, electrode movements, etc. Addition of these noise change the amplitude and shape of the ECG signal which affect accurate...
متن کاملApproximation by Critical Points of Generalized Chebyshev Polynomials
We show that any compact, connected set in the plane can be approximated by the critical points of a polynomial with only two critical values. Date: April 2011. 1991 Mathematics Subject Classification. Primary: 30C62 Secondary:
متن کاملOn nonlinear simultaneous Chebyshev approximation problems ✩
This paper is concerned with the problem of nonlinear simultaneous Chebyshev approximation in a real continuous function space. Some results on existence are established, in addition to characterization conditions of Kolmogorov type and also of alternation type. Applications are given to approximation by rational functions, by exponential sums and by Chebyshev splines with free knots. 2003 El...
متن کاملCurves Defined by Chebyshev Polynomials
Working over a field k of characteristic zero, this paper studies line embeddings of the form φ = (Ti, Tj , Tk) : A → A, where Tn denotes the degree n Chebyshev polynomial of the first kind. In Section 4, it is shown that (1) φ is an embedding if and only if the pairwise greatest common divisor of i, j, k is 1, and (2) for a fixed pair i, j of relatively prime positive integers, the embeddings ...
متن کاملLegendre polynomials Triple Product Integral and lower-degree approximation of polynomials using Chebyshev polynomials
In this report, we present two mathematical results which can be useful in a variety of settings. First, we present an analysis of Legendre polynomials triple product integral. Such integrals arise whenever two functions are multiplied, with both the operands and the result represented in the Legendre polynomial basis. We derive a recurrence relation to calculate these integrals analytically. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1973
ISSN: 0021-9045
DOI: 10.1016/0021-9045(73)90066-x