Nonlinear Process Fault Diagnosis Using Kernel Slow Feature Discriminant Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Discriminant Analysis Using Kernel Functions

Fishers linear discriminant analysis (LDA) is a classical multivariate technique both for dimension reduction and classification. The data vectors are transformed into a low dimensional subspace such that the class centroids are spread out as much as possible. In this subspace LDA works as a simple prototype classifier with linear decision boundaries. However, in many applications the linear bo...

متن کامل

Fault Diagnosis Based on Improved Kernel Fisher Discriminant Analysis

There are two fundamental problems of the Kernel Fisher Discriminant Analysis (KFDA) for nonlinear fault diagnosis. The first one is the classification performance of KFDA between the normal data and fault data degenerates as long as overlapping samples exist. The second one is that the computational cost of kernel matrix becomes large when the training sample number increases. Aiming at the tw...

متن کامل

Feature space locality constraint for kernel based nonlinear discriminant analysis

Subspace learning is an important approach in pattern recognition. Nonlinear discriminant analysis (NDA), due to its capability of describing nonlinear manifold structure of samples, is considered to be more powerful to undertake classification tasks in image related problems. In kernel based NDA representation, there are three spaces involved, i.e., original data space, implicitly mapped high ...

متن کامل

Process Fault Detection Employing Feature Selection and Linear Discriminant Analysis

Classification methods such as linear discriminant analysis (LDA) have been widely applied to fault detection in industrial processes. In this case, the problem consists of classifying the operation as normal or faulty on the basis of monitored variables. If the number of such variables is large, selection techniques may be used to choose an informative subset of features in order to obtain a c...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2015

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2015.09.593