Nonvanishing of symmetric square $L$-functions of cusp forms inside the critical strip
نویسندگان
چکیده
منابع مشابه
Nonvanishing of L-functions of Cusp Forms inside the Critical Strip
A theorem of W. Kohnen states that the generalized Riemann hypothesis (GRH) holds on an average for holomorphic cusp forms on the upper half plane for the full modular group SL2(Z). In this article we prove a couple of generalizations of this theorem of Kohnen that the GRH holds on an average for holomorphic cusp forms on the upper half plane for arbitrary level, weight and primitive nebentypus...
متن کاملToric Modular Forms and Nonvanishing of L-functions
In a previous paper [1], we defined the space of toric forms T (l), and showed that it is a finitely generated subring of the holomorphic modular forms of integral weight on the congruence group Γ1(l). In this article we prove the following theorem: modulo Eisenstein series, the weight two toric forms coincide exactly with the vector space generated by all cusp eigenforms f such that L(f, 1) 6=...
متن کاملArtin L - Functions in the Critical Strip
This paper gives a method for computing values of certain nonabelian Artin ¿-functions in the complex plane. These Artin ¿-functions are attached to irreducible characters of degree 2 of Galois groups of certain normal extensions K of Q. These fields K are the ones for which G = Gal(.KyQ) has an abelian subgroup A of index 2, whose fixed field Q(\/d) is complex, and such that there is a a S G —...
متن کاملthe effect of using critical discourse analytical tools on the improvement of the learners level of critical thinking in reading comprehension
?it is of utmost priority for an experienced teacher to train the mind of the students, and enable them to think critically and correctly. the most important question here is that how to develop such a crucial ability? this study examines a new way to the development of critical thinking utilizing critical discourse analytical tools. to attain this goal, two classes of senior english la...
Critical Values of Symmetric Power L-functions
We consider the critical values of symmetric power L-functions attached to elliptic curves over Q. We show how to calculate a canonical Deligne period, and in several numerical examples, especially for sixth and tenth powers, we examine the factorisation of the rational number apparently obtained when one divides the critical value by the canonical period. This seems to provide some support for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05419-2