Note on divisibility sequences

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primes in Divisibility Sequences

We give an overview of two important families of divisibility sequences: the Lehmer–Pierce family (which generalise the Mersenne sequence) and the elliptic divisibility sequences. Recent computational work is described, as well as some of the mathematics behind these sequences.

متن کامل

On Divisibility Properties of Sequences of Integers

Let a 1 < a, < . . . be an infinite sequence of integers of positive lower logarithmic density, in other words 1 (1) lim sup > 0. X=+logxa;<x a i DAVENPORT and ERDŐS [1] proved that then there exists an infinite subsequence a,,, < a„, ` . . . satisfying a,, ./a,, .+, . In this note we will give various sharpenings of this result . The sequence a1 < a2 < . . . will be denoted by A, an infinite s...

متن کامل

On a divisibility relation for Lucas sequences

Article history: Received 9 October 2015 Received in revised form 24 November 2015 Accepted 26 November 2015 Available online 8 January 2016 Communicated by Steven J. Miller MSC: 11B39

متن کامل

Note on regular and coregular sequences

Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.

متن کامل

Strong divisibility and lcm-sequences

Let R be an integral domain in which every two nonzero elements have a greatest common divisor. Let (an)n>1 be a sequence of nonzero elements in R. We prove that gcd(an, am) = agcd(n,m) for all n,m > 1 if and only if an = ∏

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1936

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1936-06435-9