Numerical approximation of Sturm-Liouville eigenvalues
نویسندگان
چکیده
منابع مشابه
Multiplicity of Sturm-liouville Eigenvalues
The geometric multiplicity of each eigenvalue of a self-adjoint Sturm-Liouville problem is equal to its algebraic multiplicity. This is true for regular problems and for singular problems with limit-circle endpoints, including the case when the leading coefficient changes sign.
متن کاملDependence of eigenvalues of Sturm-Liouville problems
The eigenvalues of Sturm-Liouville (SL) problems depend not only continuously but smoothly on boundary points. The derivative of the nth eigenvalue as a function of an endpoint satisfies a first order differential equation. This for arbitrary (separated or coupled) self-adjoint regular boundary conditions. In addition, as the length of the interval shrinks to zero all higher eigenvalues march o...
متن کاملComputing Eigenvalues of Singular Sturm-Liouville Problems
We describe a new algorithm to compute the eigenvalues of singular Sturm-Liouville problems with separated self-adjoint boundary conditions for both the limit-circle nonoscillatory and oscillatory cases. Also described is a numerical code implementing this algorithm and how it compares with SLEIGN. The latter is the only effective general purpose software available for the computation of the ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1980
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700006316