Numerical error for SDE: Asymptotic expansion and hyperdistributions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Verification and Comparison of Error of Asymptotic Expansion Solution of the Duffing Equation

A numerical order verification technique is applied to demonstrate that the asymptotic expansions of solutions of the Duffing equation obtained respectively by the Lindstedt-Poincaré(LP) method and the modified Lindstedt-Poincaré(MLP) method are uniformly valid for small parameter values. A numerical comparison of error shows that the MLP method is valid whereas the LP method is invalid for lar...

متن کامل

Asymptotic error expansion of wavelet approximations of smooth functions II

We generalize earlier results concerning an asymptotic error expansion of wavelet approximations. The properties of the monowavelets, which are the building blocks for the error expansion, are studied in more detail, and connections between spline wavelets and Euler and Bernoulli polynomials are pointed out. The expansion is used to compare the error for different wavelet families. We prove tha...

متن کامل

Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates

This part contains new pointwise error estimates for the finite element method for second order elliptic boundary value problems on smooth bounded domains in RN . In a sense to be discussed below these sharpen known quasi–optimal L∞ and W 1 ∞ estimates for the error on irregular quasi–uniform meshes in that they indicate a more local dependence of the error at a point on the derivatives of the ...

متن کامل

Malliavin calculus and asymptotic expansion for martingales

We present an asymptotic expansion of the distribution of a random variable which admits a stochastic expansion around a continuous martingale. The emphasis is put on the use of the Malliavin calculus; the uniform nondegeneracy of the Malliavin covariance under certain truncation plays an essential role as the Crame r condition did in the case of independent observations. Applications to stati...

متن کامل

Asymptotic Expansion of a Multiscale Numerical Scheme for Compressible Multiphase Flow

Abstract. The simulation of compressible multiphase problems is a difficult task for modelization and mathematical reasons. Here, thanks to a probabilistic multiscale interpretation of multiphase flows, we construct a numerical scheme that provides a solution to these difficulties. Three types of terms can be identified in the scheme in addition to the temporal term. One is a conservative term,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2003

ISSN: 1631-073X

DOI: 10.1016/s1631-073x(03)00189-4