NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION
نویسندگان
چکیده
منابع مشابه
Long Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations
The long-time stability properties of a few multistep numerical schemes for the two-dimensional incompressible Navier–Stokes equations (formulated in vorticity-stream function) are investigated in this article. These semi-implicit numerical schemes use a combination of explicit Adams–Bashforth extrapolation for the nonlinear convection term and implicit Adams–Moulton interpolation for the visco...
متن کاملIncompressible Navier - Stokes and Euler Limits of the Boltzmann Equation
We consider solutions of the Boltzmann equation, in a d-dimensional torus, d = 2,3, for macroscopic times T = t / e N , e a: 1, t 2 0, when the space variations are on a macroscopic scale x = eN-’r , N 2 2, x in the unit torus. Let u ( x , r ) be, for t to, a smooth solution of the incompressible Navier Stokes equations (INS) for N = 2 and of the Incompressible Euler equation (IE) for N > 2. We...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملIncompressible Navier-Stokes limit for the Enskog equation
K e y w o r d s K i n e t i c equations, Navier-Stokes system, Singularly perturbed problem, Hydrodynamic limit. The Boltzmann equation, in the hydrodynamic limit, as both the Knudsen number and the Mach number are of the same order and tend to 0, is consistent with the incompressible NavierStokes equation (set [1-a]). Our aim is to study the incompressible macroscopic limit for the Enskog kine...
متن کاملStochastic Least-Action Principle for the Incompressible Navier-Stokes Equation
We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Society for Industrial and Applied Mathematics
سال: 2015
ISSN: 1226-9433
DOI: 10.12941/jksiam.2015.19.103