NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations

The long-time stability properties of a few multistep numerical schemes for the two-dimensional incompressible Navier–Stokes equations (formulated in vorticity-stream function) are investigated in this article. These semi-implicit numerical schemes use a combination of explicit Adams–Bashforth extrapolation for the nonlinear convection term and implicit Adams–Moulton interpolation for the visco...

متن کامل

Incompressible Navier - Stokes and Euler Limits of the Boltzmann Equation

We consider solutions of the Boltzmann equation, in a d-dimensional torus, d = 2,3, for macroscopic times T = t / e N , e a: 1, t 2 0, when the space variations are on a macroscopic scale x = eN-’r , N 2 2, x in the unit torus. Let u ( x , r ) be, for t to, a smooth solution of the incompressible Navier Stokes equations (INS) for N = 2 and of the Incompressible Euler equation (IE) for N > 2. We...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Incompressible Navier-Stokes limit for the Enskog equation

K e y w o r d s K i n e t i c equations, Navier-Stokes system, Singularly perturbed problem, Hydrodynamic limit. The Boltzmann equation, in the hydrodynamic limit, as both the Knudsen number and the Mach number are of the same order and tend to 0, is consistent with the incompressible NavierStokes equation (set [1-a]). Our aim is to study the incompressible macroscopic limit for the Enskog kine...

متن کامل

Stochastic Least-Action Principle for the Incompressible Navier-Stokes Equation

We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korea Society for Industrial and Applied Mathematics

سال: 2015

ISSN: 1226-9433

DOI: 10.12941/jksiam.2015.19.103