Numerical index and renorming
نویسندگان
چکیده
منابع مشابه
The Szlenk Index and the Fixed Point Property under Renorming
Assume that X is a Banach space such that its Szlenk index Sz X is less than or equal to the first infinite ordinal ω. We prove that X can be renormed in such a way that X with the resultant norm satisfies R X < 2, where R · is the Garcı́a-Falset coefficient. This leads us to prove that if X is a Banach space which can be continuously embedded in a Banach space Y with Sz Y ≤ ω, then, X can be re...
متن کاملRenorming James Tree Space
We show that James tree space JT can be renormed to be Lipschitz separated. It negatively answers the question of J. Borwein, J. Giles and J. Vanderwerff whether every Lipschitz separated Banach space is an Asplund space.
متن کاملRenorming spaces with greedy bases
In approximation theory one is often faced with the following problem. We start with a signal, i.e., a vector x in some Banach space X. We then consider the (unique) expansion ∑∞ i=1 xiei of x with respect to some (Schauder) basis (ei) of X. For example, this may be a Fourier expansion of x, or it may be a wavelet expansion in Lp. We then wish to approximate x by considering m-term approximatio...
متن کاملA note on convex renorming and fragmentability
Using the game approach to fragmentability, we give new and simpler proofs of the following known results: (a) If the Banach space admits an equivalent Kadec norm, then its weak topology is fragmented by a metric which is stronger than the norm topology. (b) If the Banach space admits an equivalent rotund norm, then its weak topology is fragmented by a metric. (c) If the Banach space is weakly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2002
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-02-06576-0