Numerical solution of 2D elastostatic problems formulated by potential functions
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Obstacle Problems by B-Spline Functions
In this study, we use B-spline functions to solve the linear and nonlinear special systems of differential equations associated with the category of obstacle, unilateral, and contact problems. The problem can easily convert to an optimal control problem. Then a convergent approximate solution is constructed such that the exact boundary conditions are satisfied. The numerical examples and comput...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولNumerical Solution of Delay Fractional Optimal Control Problems using Modification of Hat Functions
In this paper, we consider the numerical solution of a class of delay fractional optimal control problems using modification of hat functions. First, we introduce the fractional calculus and modification of hat functions. Fractional integral is considered in the sense of Riemann-Liouville and fractional derivative is considered in the sense of Caputo. Then, operational matrix of fractional inte...
متن کاملA Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
متن کاملNumerical Solution of 2D Contact Shape Optimization Problems Involving a Solution-Dependent Coefficient of Friction
This contribution deals with numerical solution of shape optimization problems in frictional contact mechanics. The state problem in our case is given by 2D static Signorini problems with Tresca friction and a solution-dependent coefficient of friction. A suitable Lipschitz continuity assumption on the coefficient of friction is made, ensuring unique solvability of the discretized state problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2013
ISSN: 0307-904X
DOI: 10.1016/j.apm.2013.01.030