Numerical solution of fractional-order ordinary differential equations using the reformulated infinite state representation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using operational matrix for numerical solution of fractional differential equations

In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...

متن کامل

A Numerical Method for Solution of Ordinary Differential Equations of Fractional Order

In this paper we propose an algorithm for the numerical solution of arbitrary differential equations of fractional order. The algorithm is obtained by using the following decomposition of the differential equation into a system of differential equation of integer order connected with inverse forms of Abel-integral equations. The algorithm is used for solution of the linear and non-linear equati...

متن کامل

Numerical Schemes for Fractional Ordinary Differential Equations

Fractional calculus, which has almost the same history as classic calculus, did not attract enough attention for a long time. However, in recent decades, fractional calculus and fractional differential equations become more and more popular because of its powerful potential applications. A large number of new differential equations (models) that involve fractional calculus are developed. These ...

متن کامل

Matlab : Numerical Solution of Ordinary Differential Equations

Matlab has facilities for the numerical solution of ordinary differential equations (ODEs) of any order. In this document we first consider the solution of a first order ODE. Higher order ODEs can be solved using the same methods, with the higher order equations first having to be reformulated as a system of first order equations. Techniques for solving the first order and second order equation...

متن کامل

Numerical solution of ordinary differential equations

Ordinary differential equations are ubiquitous in science and engineering: in geometry and mechanics from the first examples onwards (Newton, Leibniz, Euler, Lagrange), in chemical reaction kinetics, molecular dynamics, electronic circuits, population dynamics, and many more application areas. They also arise, after semidiscretization in space, in the numerical treatment of time-dependent parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2019

ISSN: 1314-2224,1311-0454

DOI: 10.1515/fca-2019-0070