Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique
نویسندگان
چکیده
منابع مشابه
Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique
We present here a brief description of a numerical technique suitable for solving axisymmetric (or two-dimensional) free-boundary problems of fluid mechanics. The technique is based on a finite-difference solution of the equations of motion on an orthogonal curvilinear coordinate system, which is also constructed numerically and always adjusted so as to fit the current boundary shape. The overa...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملNumerical Solution for Boundary Value Problem Using Finite Difference Method
In this paper, Numerical Methods for solving ordinary differential equations, beginning with basic techniques of finite difference methods for linear boundary value problem is investigated. Numerical solution is found for the boundary value problem using finite difference method and the results are compared with analytical solution. MATLAB coding is developed for the finite difference method. T...
متن کاملFinite Difference Solution of Mixed Boundary-value Elastic Problems
A new numerical method of solution has been developed for the analysis of deformation and stresses in elastic bodies subjected to mixed boundary-conditions. The program is capable of dealing with both regular and irregular shapes of boundaries appropriately. An ideal mathematical model, based on the displacement potential function, has been used in the finite difference solution. The present pa...
متن کاملA novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 1984
ISSN: 0022-1120,1469-7645
DOI: 10.1017/s0022112084002214