Obstruction theory in algebraic categories, II
نویسندگان
چکیده
منابع مشابه
Obstruction Theory in Model Categories
Many examples of obstruction theory can be formulated as the study of when a lift exists in a commutative square. Typically, one of the maps is a cofibration of some sort and the opposite map is a fibration, and there is a functorial obstruction class that determines whether a lift exists. Working in an arbitrary pointed proper model category, we classify the cofibrations that have such an obst...
متن کامل2 00 2 Obstruction Theory in Model Categories
Working in an arbitrary pointed proper model category, we define what it means for a cofibration to have an obstruction theory. We describe the cofibrations that have an obstruction theory with respect to all fibrations. Up to weak equivalence, retract, and cobase change, they are the cofibrations with weakly contractible target. Equivalently, they are the retracts of principal cofibrations. Wi...
متن کاملObstruction Theory for Objects in Abelian and Derived Categories
In this paper we develop the obstruction theory for lifting complexes, up to quasi-isomorphism, to derived categories of flat nilpotent deformations of abelian categories. As a particular case we also obtain the corresponding obstruction theory for lifting of objects in terms of Yoneda Extgroups. In appendix we prove the existence of miniversal derived deformations of complexes.
متن کاملControlled algebraic G-theory, II
There are two established ways to introduce geometric control in the category of free modules—the bounded control and the continuous control at infinity. Both types of control can be generalized to arbitrary modules over a noetherian ring and applied to study algebraic K-theory of infinite groups. This was accomplished for bounded control in part I of the present paper and the subsequent work o...
متن کاملON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS
Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category TopSys of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1972
ISSN: 0022-4049
DOI: 10.1016/0022-4049(72)90009-6