Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
نویسندگان
چکیده
منابع مشابه
Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour-liquid-solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the exist...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملSub-diffraction Laser Synthesis of Silicon Nanowires
We demonstrate synthesis of silicon nanowires of tens of nanometers via laser induced chemical vapor deposition. These nanowires with diameters as small as 60 nm are produced by the interference between incident laser radiation and surface scattered radiation within a diffraction limited spot, which causes spatially confined, periodic heating needed for high resolution chemical vapor deposition...
متن کاملMesoporous silicon oxynitride thin films.
Highly-ordered, pore-modified with amine groups, and glass-like mesoporous silicon oxynitride thin films were prepared by heat treatment of as-synthesized mesoporous silica thin films in a flowing ammonia environment at high temperatures.
متن کاملCalculation of the electron mobility and spin lifetime enhancement by strain in thin silicon films
Spintronics attracts much attention because of the potential to build novel spin-based devices which are superior to nowadays charge-based microelectronic devices. Silicon, the main element of microelectronics, is promising for spin-driven applications. Understanding the details of the spin propagation in silicon structures is a key for building novel spin-based nanoelectronic devices. We inves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Crystallography
سال: 2009
ISSN: 0021-8898
DOI: 10.1107/s0021889808042131