On a class of dual integral equations involving trigonometrical functions
نویسندگان
چکیده
منابع مشابه
Approximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کاملOn the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کاملSolution of Some Integral Equations Involving Confluent k-Hypergeometric Functions
The principle aim of this research article is to investigate the properties of k-fractional integration introduced and defined by Mubeen and Habibullah [1], and secondly to solve the integral equation of the form 1 1 0 , ; d , ; k x k k x t g x F t x f t k t t 0, 0, 0,0 k x , for , where 1 1 , ; , ; k F x k ...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کاملIntegral Equations for Memory Functions Involving Projection Operators
Kinetic equations for the phase-space-time correlation functions contain memory functions that involve projection operators. It is shown that these memory functions can be represented by integral equations involving only real-time correlation functions, thereby eliminating the projection operators completely in the kinetic description of correlation functions. The weak-coupling and density expa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2007
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(07)80067-x