On a deflation method for the symmetric generalized eigenvalue problem
نویسندگان
چکیده
منابع مشابه
Some results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملOn solving the definite tridiagonal symmetric generalized eigenvalue problem
In this manuscript we will present a new fast technique for solving the generalized eigenvalue problem T x = λSx, in which both matrices T and S are symmetric tridiagonal matrices and the matrix S is assumed to be positive definite.1 A method for computing the eigenvalues is translating it to a standard eigenvalue problem of the following form: L−1T L−T (LT x) = λ(LT x), where S = LLT is the Ch...
متن کاملTrust-region algorithms for the generalized symmetric eigenvalue problem
The generalized eigenvalue problem
متن کاملGeneralizations of an Inverse Free Krylov Subspace Method for the Symmetric Generalized Eigenvalue Problem
OF DISSERTATION
متن کاملOn the symmetric quadratic eigenvalue complementarity problem
In this paper, the solution of the symmetric Quadratic Eigenvalue Complementarity Problem (QEiCP) is addressed. The QEiCP has a solution provided the so-called co-regular and co-hyperbolic properties hold and is said to be symmetric if all the matrices involved in its definition are symmetric. We show that under the two conditions stated above the symmetric QEiCP can be reduced to the problem o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1987
ISSN: 0024-3795
DOI: 10.1016/0024-3795(87)90256-4