On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria

نویسندگان

چکیده

Abstract In this paper, we consider a nonlinear sequential q -difference equation based on the Caputo fractional quantum derivatives with nonlocal boundary value conditions containing Riemann–Liouville integrals in four points. direction, derive some criteria and of existence uniqueness solutions to given problem. Some pure techniques condensing operators Sadovskii’s measure eigenvalue an operator are employed prove main results. Also, Ulam–Hyers stability generalized investigated. We examine our results by providing two illustrative examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Derivatives of Nonlinear q-Difference Equations with Three-Point q-Integral Boundary Conditions

This paper studies sufficient conditions for the existence of solutions to the problem of sequential derivatives of nonlinear qdifference equations with three-point q-integral boundary conditions. Our results are concerned with several quantum numbers of derivatives and integrals. By using Banach’s contraction mapping, Krasnoselskii’s fixed-point theorem, and Leray-Schauder degree theory, some ...

متن کامل

Positive Solutions for Nonlinear Caputo Type Fractional q-Difference Equations with Integral Boundary Conditions

Since Al-Salam [1] and Agarwal [2] introduced the fractional q-difference calculus, the theory of fractional q-difference calculus itself and nonlinear fractional q-difference equation boundary value problems have been extensively investigated by many researchers. For some recent developments on fractional q-difference calculus and boundary value problems of fractional q-difference equations, s...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

Certain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators

In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kobe...

متن کامل

Anti-periodic boundary value problems involving nonlinear fractional q-difference equations

In this paper, we consider a class of anti-periodic boundary value problems involving nonlinear fractional q-difference equations. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, some examples are presented to illustrate the main results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2021

ISSN: ['1687-1839', '1687-1847']

DOI: https://doi.org/10.1186/s13662-021-03525-3