On a sum involving the Euler totient function

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Square Values of the Product of the Euler Totient and Sum of Divisors Functions

If n is a positive integer such that φ(n)σ(n) = m for some positive integer m, then m 6 n. We put m = n − a and we study the positive integers a arising in this way.

متن کامل

A Probabilistic Look at Series Involving Euler’s Totient Function

We use a probabilistic method to evaluate the limit of ∑n x=1 φ(x)x r−1 n−(r+1), where φ(x) is the Euler totient function and r is a nonnegative integer. We extend the probabilistic method to evaluate two other generalized types of series that involve Euler’s totient function. In addition to the probabilistic method, an analytic approach is presented to evaluate the series when the exponent par...

متن کامل

A Multiple Sum Involving the Möbius Function

We consider a multiple arithmetical sum involving the Möbius function which despite its elementary appearance is in fact of a highly intriguing nature. We establish an asymptotic formula for the quadruple case that raises the first genuinely non-trivial situation. This is a rework of an old unpublished note of ours. 2001 Mathematics Subject Classification: Primary 11A25; Secondary 11M06

متن کامل

ON A SUM INVOLVING THE PRIME COUNTING FUNCTION π(x)

An asymptotic formula for the sum of reciprocals of π(n) is derived, where π(x) is the number of primes not exceeding x. This result improves the previous results of De Koninck-Ivi´c and L. Panaitopol. Let, as usual, π(x) = px 1 denote the number of primes not exceeding x. The prime number theorem (see e.g., [2, Chapter 12]) in its strongest known form states that (1) π(x) = li x + R(x), with (...

متن کامل

On the Ratio of the Sum of Divisors and Euler’s Totient Function I

We prove that the only solutions to the equation σ(n) = 2 · φ(n) with at most three distinct prime factors are 3, 35 and 1045. Moreover there exist at most a finite number of solutions to σ(n) = 2 ·φ(n) with Ω(n) ≤ k, and there are at most 22 k+k − k squarefree solutions to φ(n) ∣∣σ(n) if ω(n) = k. Lastly the number of solutions to φ(n) ∣∣σ(n) as x→∞ is of order O (x exp (−1 2log x)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2019

ISSN: 0019-3577

DOI: 10.1016/j.indag.2019.01.009