On an indefinite, non-Lipschitz semilinear elliptic problem: Compactly supported solutions, multiplicity and uniqueness
نویسندگان
چکیده
منابع مشابه
Uniqueness of Semilinear Elliptic Inverse Problem
We consider the uniqueness of the inverse problem for a semilinear elliptic differential equation with Dirichlet condition. The necessary and sufficient condition of a unique solution is obtained. We improved the results obtained by Isakov and Sylvester (1994) for the same problem.
متن کاملExistence and uniqueness of solutions for a semilinear elliptic system
We consider the existence, the nonexistence, and the uniqueness of solutions of some special systems of nonlinear elliptic equations with boundary conditions. In a particular case, the system reduces to the homogeneous Dirichlet problem for the biharmonic equation ∆ 2 u = |u| p in a ball with p > 0.
متن کاملExistence and Uniqueness of Solutions to a Semilinear Elliptic System
In this article, we show the existence and uniqueness of smooth solutions for boundary-value problems of semilinear elliptic systems.
متن کاملMultiplicity of Positive Solutions for Semilinear Elliptic Systems
and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.12.008