On Andrews’ Partitions with Parts Separated by Parity

نویسندگان

چکیده

In this paper, we present a generalization of one the theorems in [Andrews, G.E. Partitions with parts separated by parity. Ann. Comb. 2019, 23, 241–248], and give its bijective proof. Further variations related partition functions are studied resulting number interesting identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parity Results for p-Regular Partitions with Distinct Parts

We consider the partition function bp(n), which counts the number of partitions of the integer n into distinct parts with no part divisible by the prime p. We prove the following: Let p be a prime greater than 3 and let r be an integer between 1 and p−1, inclusively, such that 24r + 1 is a quadratic nonresidue modulo p. Then, for all nonnegative integers n, bp(pn + r) ≡ 0 (mod 2).

متن کامل

Conjecture of Andrews on Partitions

Definition 1.2. For an even integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod λ+ 1) may be repeated and no part is equivalent to 0,±(a−λ/2)(λ+1)mod[(2k−λ+1)(λ+1)]. For an odd integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod((λ+1)/2)) may be repeate...

متن کامل

Combinatorial telescoping for an identity of Andrews on parity in partitions

Following the method of combinatorial telescoping for alternating sums given by Chen, Hou and Mu, we present a combinatorial telescoping approach to partition identities on sums of positive terms. By giving a classification of the combinatorial objects corresponding to a sum of positive terms, we establish bijections that lead a telescoping relation. We illustrate this idea by giving a combinat...

متن کامل

Observations on the Parity of the Total Number of Parts in Odd–part Partitions

In recent years, numerous functions which count the number of parts of various types of partitions have been studied. In this brief note, we consider the function pto(n) which counts the number of parts in all odd–part partitions of n (or what Chen and Ji recently called the number of rooted partitions of n into odd parts). In particular, we prove a number of results on the parity of pto(n), in...

متن کامل

A note on partitions into distinct parts and odd parts

Bousquet-Mélou and Eriksson showed that the number of partitions of n into distinct parts whose alternating sum is k is equal to the number of partitions of n into k odd parts, which is a refinement of a well-known result by Euler. We give a different graphical interpretation of the bijection by Sylvester on partitions into distinct parts and partitions into odd parts, and show that the bijecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9212693