On approximation by solutions of partial differential equations
نویسندگان
چکیده
منابع مشابه
Topological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On fuzzy solutions for partial differential equations
The main goal of this work is to study the classical models of Partial Differential Equations (PDE) as the heat, wave and Poisson with uncertain parameters, considering the parameter as a fuzzy number. The fuzzy solution is built from the fuzzification of the deterministic solution. The continuity of the Zadeh extension is used to obtain qualitative properties upon the regular α − cuts of the f...
متن کاملApproximation Solution of Fractional Partial Differential Equations by Neural Networks
Neural networks with radial basis functions method are used to solve a class of initial boundary value of fractional partial differential equations with variable coefficients on a finite domain. It takes the case where a left-handed or right-handed fractional spatial derivative may be present in the partial differential equations. Convergence of this method will be discussed in the paper. A num...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1962
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1962-10691-0