On approximation of maps into real algebraic homogeneous spaces
نویسندگان
چکیده
Let X be a real algebraic variety (resp. nonsingular variety) and let Y homogeneous space for some linear group. We prove that continuous C ∞ ) map f : → can approximated by regular maps in the 0 topology if only it is homotopic to map. Taking = S p , unit -dimensional sphere, we obtain solutions of several problems have been open since 1980's which concern approximation with values spheres. This has consequences between For example, every positive integer n from into topology. Up now such result known five special namely, 1 2 3 4 or 7. Soit une variété algébrique réelle non singulière) et soit un espace homogène d'un groupe linéaire réel. Nous montrons qu'une application continue peut être approximée par des applications régulières en topologie si seulement elle est homotope à régulière. En prenant la sphère unitaire de dimension nous obtenons plusieurs problèmes ouverts depuis les années 1980 concernant l'approximation valeurs dans sphères unitaires. Par démontrons que pour tout entier toute . Ceci n'était connu auparavant
منابع مشابه
Homotopy Classification of Maps into Homogeneous Spaces
We give an alternative to Postnikov’s homotopy classification of maps from 3-dimensional CW-complexes to homogeneous spaces G/H of Lie groups. It describes homotopy classes in terms of lifts to the group G and is suitable for extending the notion of homotopy to Sobolev maps. This is required in applications to variational problems of mathematical physics.
متن کاملSpaces of algebraic maps from real projective spaces into complex projective spaces
We study the homotopy types of spaces of algebraic (rational) maps from real projective spaces into complex projective spaces. It was already shown in [1] that the inclusion of the first space into the second one is a homotopy equivalence. In this paper we prove that the homotopy types of the terms of the natural ‘degree’ filtration approximate closer and closer the homotopy type of the space o...
متن کاملSpaces of algebraic and continuous maps between real algebraic varieties
We consider the inclusion of the space of algebraic (regular) maps between real algebraic varieties in the space of all continuous maps. For a certain class of real algebraic varieties, which include real projective spaces, it is well known that the space of real algebraic maps is a dense subset of the space of all continuous maps. Our first result shows that, for this class of varieties, the i...
متن کاملJiang-type Theorems for Coincidences of Maps into Homogeneous Spaces
Let f, g : X → G/K be maps from a closed connected orientable manifold X to an orientable coset space M = G/K where G is a compact connected Lie group, K a closed subgroup and dimX = dimM . In this paper, we show that if L(f, g) = 0 then N(f, g) = 0; if L(f, g) 6= 0 then N(f, g) = R(f, g) where L(f, g), N(f, g), and R(f, g) denote the Lefschetz, Nielsen, and Reidemeister coincidence numbers of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2022
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2022.03.002