On Avakumovic’s theorem for generalized Thomas-Fermi differential equations
نویسندگان
چکیده
منابع مشابه
On Avakumović’s Theorem for Generalized Thomas–fermi Differential Equations
For the generalized Thomas–Fermi differential equation (|x|x) = q(t)|x|x, it is proved that if 1 6 α < β and q(t) is a regularly varying function of index μ with μ > −α − 1, then all positive solutions that tend to zero as t → ∞ are regularly varying functions of one and the same negative index ρ and their asymptotic behavior at infinity is governed by the unique definite decay law. Further, an...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Rational approximation to Thomas–Fermi equations
We show that a simple and straightforward rational approximation to the Thomas– Fermi equation provides the slope at origin with unprecedented accuracy and that relatively small Padé approximants are far more accurate than more elaborate approaches proposed recently by other authors. We consider both the Thomas–Fermi equation for isolated atoms and for atoms in strong magnetic fields.
متن کاملGeneralized Uniqueness Theorem for Ordinary Differential Equations in Banach Spaces
We consider nonlinear ordinary differential equations in Banach spaces. Uniqueness criterion for the Cauchy problem is given when any of the standard dissipative-type conditions does apply. A similar scalar result has been studied by Majorana (1991). Useful examples of reflexive Banach spaces whose positive cones have empty interior has been given as well.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications de l'Institut Mathematique
سال: 2016
ISSN: 0350-1302,1820-7405
DOI: 10.2298/pim1613125j