On backward attractors of interval maps*
نویسندگان
چکیده
Abstract Special ? -limit sets ( s? sets) combine together all accumulation points of backward orbit branches a point x under noninvertible map. The most important question about them is whether or not they are closed. We challenge the notion as attractors for interval maps by showing that need be This disproves conjecture Kolyada, Misiurewicz, and Snoha. give criterion in terms Xiong’s attracting centre completely characterizes which have closed, we show our satisfied piecewise monotone case. apply Blokh’s models solenoidal basic ? to solve four additional conjectures Snoha relating topological properties dynamics within them. For example, isolated set an map always periodic, non-degenerate components union one two transitive cycles intervals, rest nowhere dense. Moreover, both F ? G ? . Finally, since propose new ? serve attractors. smallest closed converge, it coincides with closure set. At end paper suggest several problems
منابع مشابه
study of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Critically Finite Maps and Attractors On
We first study the structure of the post-critical set of critically finite maps on P and show that the Julia set for a k−critically finite map is the whole of P. We then study a specific k−critically finite map and show that the only non-empty closed backward invariant subset is the whole of P . Based on this result, we give an example of a holomorphic map on P that has a chaotic nonalgebraic a...
متن کاملOn Eventually Expanding Maps of the Interval
In this paper we conjecture that the piecewise linear map f(x) = px1I[0,1/p)(x)+ (sx − s/p)1I[1/p,1](x), p > 1, 0 < s < 1 which has an expanding, onto branch and a contracting branch is eventually piecewise expanding. We give a partial proof of the conjecture, in particular for values of p and s such that d− ln(p(1−s)+s) ln s e 6 = d− ln p ln s e.
متن کاملOn a family of maps with multiple chaotic attractors
Multistability is characterized by the occurrence of multiple coexisting attractors. We introduce a family of maps that possess this property and in particular exhibits coexisting chaotic attractors. In this family not only the maps’ parameters can be varied but also their dimension. So, four types of multistable attractors, equilibria, periodic orbits, quasi-periodic orbits and chaotic attract...
متن کاملSelf-organizing maps based on limit cycle attractors
Recent efforts to develop large-scale brain and neurocognitive architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason for this is that most conventional SOMs use a static encoding representation: each input pattern or sequence is effectively represented as a fixed point activation pattern in the map layer, something that is inconsistent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2021
ISSN: ['0951-7715', '1361-6544']
DOI: https://doi.org/10.1088/1361-6544/ac23b6