On $\cal K$-positive elements of the spectral resolution of a $\cal K$-positive operator
نویسندگان
چکیده
منابع مشابه
CHARACTERIZATIONS OF OPERATOR ORDER FOR k STRICTLY POSITIVE OPERATORS
Let Ai (i = 1,2, · · · ,k) be bounded linear operators on a Hilbert space. This paper aims to show a characterization of operator order Ak Ak−1 · · · A2 A1 > 0 in terms of operator inequalities. Afterwards, an application of the characterization is given to operator equalities due to Douglas’s majorization and factorization theorem. Mathematics subject classification (2010): 47A63.
متن کاملthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولomissible extensions of $sl_2(k)$ where $k$ is a field of positive characteristic
a normal subgroup $n$ of a group $g$ is said to be an $emph{omissible}$ subgroup of $g$ if it has the following property: whenever $xleq g$ is such that $g=xn$, then $g=x$. in this note we construct various groups $g$, each of which has an omissible subgroup $nneq 1$ such that $g/ncong sl_2(k)$ where $k$ is a field of positive characteristic.
متن کاملconstruction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولAn Existence Results on Positive Solutions for a Remarks on k-Torsionless Modules
Let R be a commutative Noetherian ring. The k-torsionless modules are defined in [7] as a generalization of torsionless and reflexive modules, i.e., torsionless modules are 1-torsionless and reflexive modules are 2-torsionless. Some properties of torsionless, reflexive, and k-torsionless modules are investigated in this paper. It is proved that if M is an R-module such that G-dimR(M)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky
سال: 1965
ISSN: 0528-2195
DOI: 10.21136/cpm.1965.108654