On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces
نویسندگان
چکیده
منابع مشابه
Lipschitz Type Characterizations for Bergman Spaces
We obtain new characterizations for Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence, we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically lifted to the bidisk.
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملComposition Operators from Nevanlinna Type Spaces to Bloch Type Spaces
Let X and Y be complete metric spaces of analytic functions over the unit disk in the complex plane. A linear operator T : X → Y is a bounded operator with respect to metric balls if T takes every metric ball in X into a metric ball in Y . We also say that T is metrically compact if it takes every metric ball in X into a relatively compact subset in Y . In this paper we will consider these prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2014
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-014-1361-z