On cohomological dimension for paracompact spaces, II
نویسندگان
چکیده
منابع مشابه
Cohomological Dimension Theory of Compact Metric Spaces
0. Introduction 1 1. General properties of the cohomological dimension 2 2. Bockstein theory 6 3. Cohomological dimension of Cartesian product 10 4. Dimension type algebra 15 5. Realization theorem 19 6. Test spaces 24 7. Infinite-dimensional compacta of finite cohomological dimension 28 8. Resolution theorems 33 9. Resolutions preserving cohomological dimensions 41 10. Imbedding and approximat...
متن کاملA Note on Paracompact Spaces
Let us quickly recall the definitions of the terms which are used in the statement of Theorem 1, and which will be used throughout this paper. Let X be a topological space. A collection <R of subsets of X is called open (resp. closed) if every element of "R. is open (resp. closed) in X. A covering of X is a collection of subsets of X whose union is X; observe that in this paper a covering need ...
متن کاملStrongly base-paracompact spaces
A space X is said to be strongly base-paracompact if there is a basis B for X with |B| = w(X) such that every open cover of X has a star-finite open refinement by members of B. Strongly paracompact spaces which are strongly base-paracompact are studied. Strongly base-paracompact spaces are shown have a family of functions F with cardinality equal to the weight such that every open cover has a l...
متن کاملSeparation in Countably Paracompact Spaces
We study the question "Are discrete families of points separated in countably paracompact spaces?" in the class of first countable spaces and the class of separable spaces. Two of the main directions of research in general topology in the last thirty years have been the work of Jones, Bing, Tall, Fleissner, Nyikos and others motivated by the normal Moore space problem (when are discrete familie...
متن کاملOn a Class of Countably Paracompact Spaces
In this note we shall characterize a topological property which is stronger than countable paracompactness but which is equivalent to it for normal spaces. A real valued function on a topological space X is locally bounded if each point has a neighborhood on which the function is bounded. Let C(X) denote the set of real valued continuous functions on X. A topological space is a cb-space if for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1962
ISSN: 0386-2194
DOI: 10.3792/pja/1195523240