On Conjugacy of High-Order Linear Ordinary Differential Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Conjugacy of High-order Linear Ordinary Differential Equations

It is shown that the differential equation u(n) = p(t)u, where n ≥ 2 and p : [a, b] → R is a summable function, is not conjugate in the segment [a, b], if for some l ∈ {1, . . . , n− 1} , α ∈]a, b[ and β ∈]α, b[ the inequalities n ≥ 2 + 1 2 (1 + (−1)n−l), (−1)n−lp(t) ≥ 0 for t ∈ [a, b],

متن کامل

Order Ordinary Differential Equations

The DI methods for directly solving a system ofa general higher order ODEs are discussed. The convergence of the constant stepsize and constant order formulation of the DI methods is proven first before the convergencefor the variable order and stepsize case.

متن کامل

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations

Because the presentation of this material in class will differ from that in the book, I felt that notes that closely follow the class presentation might be appreciated.

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: gmj

سال: 1994

ISSN: 1572-9176,1072-947X

DOI: 10.1515/gmj.1994.1