On convergence of iterative projection methods for symmetric eigenvalue problems
نویسندگان
چکیده
منابع مشابه
On convergence of iterative projection methods for symmetric eigenvalue problems
We prove global convergence of particular iterative projection methods using the so-called shift-and-invert technique for solving symmetric generalized eigenvalue problems. In particular, we aim to provide a variant of the convergence theorem obtained by Crouzeix, Philippe, and Sadkane for the generalized Davidson method. Our result covers the Jacobi-Davidson and the rational Krylov methods wit...
متن کاملIterative Projection Methods for Large–scale Nonlinear Eigenvalue Problems
In this presentation we review iterative projection methods for sparse nonlinear eigenvalue problems which have proven to be very efficient. Here the eigenvalue problem is projected to a subspace V of small dimension which yields approximate eigenpairs. If an error tolerance is not met then the search space V is expanded in an iterative way with the aim that some of the eigenvalues of the reduc...
متن کاملHarmonic projection methods for large non-symmetric eigenvalue problems
The problem of finding interior eigenvalues of a large nonsymmetric matrix is examined. A procedure for extracting approximate eigenpairs from a subspace is discussed. It is related to the Rayleigh–Ritz procedure, but is designed for finding interior eigenvalues. Harmonic Ritz values and other approximate eigenvalues are generated. This procedure can be applied to the Arnoldi method, to precond...
متن کاملConvergence orders of iterative methods for nonlinear eigenvalue problems
The convergence analysis of iterative methods for nonlinear eigenvalue problems is in the most cases restricted either to algebraic simple eigenvalues or to polynomial eigenvalue problems. In this paper we consider two classical methods for general holomorphic eigenvalue problems, namely the nonlinear generalized Rayleigh quotient iteration (NGRQI) and the augmented Newton method. For both meth...
متن کاملInner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning
Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.08.035