On defining equations of symmetric submanifolds in complex projective spaces
نویسندگان
چکیده
منابع مشابه
Symmetric Submanifolds of Riemannian Symmetric Spaces
A symmetric space is a Riemannian manifold that is “symmetric” about each of its points: for each p ∈M there is an isometry σp of M such that (σp)∗ = −I on TpM . Symmetric spaces and their local versions were studied and classified by E.Cartan in the 1920’s. In 1980 D.Ferus [F2] introduced the concept of symmetric submanifolds of Euclidean space: A submanifold M of R is a symmetric submanifold ...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملWillmore Lagrangian Submanifolds in Complex Projective Space
Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex projective space CPn and let S and H be the squared norm of the second fundamental form and the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q the functions which assign to each point of M the infimum of the sectional curvature and Ricci curvature at the point. We prove some inte...
متن کاملTotally geodesic submanifolds in Riemannian symmetric spaces
In the first part of this expository article, the most important constructions and classification results concerning totally geodesic submanifolds in Riemannian symmetric spaces are summarized. In the second part, I describe the results of my classification of the totally geodesic submanifolds in the Riemannian symmetric spaces of rank 2. To appear in the Proceedings volume for the conference V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1981
ISSN: 0025-5645
DOI: 10.2969/jmsj/03320267