On ergodic actions whose self-joinings are graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

An Introduction to Joinings in Ergodic Theory

Since their introduction by Furstenberg [3], joinings have proved a very powerful tool in ergodic theory. We present here some aspects of the use of joinings in the study of measurable dynamical systems, emphasizing on • the links between the existence of a non trivial common factor and the existence of a joining which is not the product measure, • how joinings can be employed to provide elegan...

متن کامل

Topological Self-joinings of Cartan Actions by Toral Automorphisms

We show that if r ≥ 3 and α is a faithful Z-Cartan action on a torus T by automorphisms, then any closed subset of (T) which is invariant and topologically transitive under the diagonal Z-action by α is homogeneous, in the sense that it is either the full torus (T), or a finite set of rational points, or a finite disjoint union of parallel translates of some d-dimensional invariant subtorus. A ...

متن کامل

some families of graphs whose domination polynomials are unimodal

let $g$ be a simple graph of order $n$. the domination polynomial of $g$ is the polynomial $d(g, x)=sum_{i=gamma(g)}^{n} d(g,i) x^{i}$, where $d(g,i)$ is the number of dominating sets of $g$ of size $i$ and $gamma(g)$ is the domination number of $g$. in this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

Joinings of Higher Rank Diagonalizable Actions on Locally Homogeneous Spaces

We classify joinings between a fairly general class of higher rank diagonalizable actions on locally homogeneous spaces. In particular, we classify joinings of the action of a maximal R-split torus on G/Γ, with G a simple Lie group of R-rank ≥ 2 and Γ < G a lattice. We deduce from this a classification of measurable factors of such actions, as well as certain equidistribution properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 1987

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385700004193