On exact solutions of a class of fractional Euler–Lagrange equations
نویسندگان
چکیده
منابع مشابه
On exact solutions of a class of fractional Euler-Lagrange equations
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where aD α t x(t)) and 0 < α < 1, such that the following is the corresponding Euler-Lagrange tD α b ( c aD α t )x(t) + b(t, x(t))( c aD α t x(t)) + f(t, x(t)) = 0. (1) At last, exact solutions for some Euler-Lagrange equations ar...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملOn the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
متن کاملNew exact solutions of differential equations derived by fractional calculus
and integral calculus from integer orders n to the entire complex plane. Methods are presented for using this generalized calculus with Laplace transforms of complex-order derivatives to solve analytically many differential equations in physics, facilitate numerical computations, and generate new infinite-series representations of functions. As examples, new exact analytic solutions of differen...
متن کاملON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2007
ISSN: 0924-090X,1573-269X
DOI: 10.1007/s11071-007-9281-7