On false discovery rate thresholding for classification under sparsity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On false discovery rate thresholding for classification under sparsity

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Adapting to Unknown Sparsity by controlling the False Discovery Rate

We attempt to recover an n-dimensional vector observed in white noise, where n is large and the vector is known to be sparse, but the degree of sparsity is unknown. We consider three different ways of defining sparsity of a vector: using the fraction of nonzero terms; imposing power-law decay bounds on the ordered entries; and controlling the lp norm for p small. We obtain a procedure which is ...

متن کامل

Wavelet thresholding with bayesian false discovery rate control.

The false discovery rate (FDR) procedure has become a popular method for handling multiplicity in high-dimensional data. The definition of FDR has a natural Bayesian interpretation; it is the expected proportion of null hypotheses mistakenly rejected given a measure of evidence for their truth. In this article, we propose controlling the positive FDR using a Bayesian approach where the rejectio...

متن کامل

Asymptotic Minimaxity of False Discovery Rate Thresholding for Sparse Exponential Data

Control of the False Discovery Rate (FDR) is an important development in multiple hypothesis testing, allowing the user to limit the fraction of rejected null hypotheses which correspond to false rejections (i.e. false discoveries). The FDR principle also can be used in multiparameter estimation problems to set thresholds for separating signal from noise when the signal is sparse. Success has b...

متن کامل

More Powerful Control of the False Discovery Rate Under Dependence

Abstract In a breakthrough paper, Benjamini and Hochberg (J Roy Stat Soc Ser B 57:289–300, 1995) proposed a new error measure for multiple testing, the FDR; and developed a distribution-free procedure to control it under independence among the test statistics. In this paper we argue by extensive simulation and theoretical considerations that the assumption of independence is not needed. Along t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2012

ISSN: 0090-5364

DOI: 10.1214/12-aos1042