On finiteness of some verbal subgroups in profinite groups
نویسندگان
چکیده
Given a group word w and G, the set of w-values in G is denoted by Gw verbal subgroup w(G) one generated Gw. In present paper we consider profinite groups admitting such that cardinality less than 2ℵ0 finitely many w-values. For several families words show under these assumptions must be finite. Our results are related to concept conciseness words.
منابع مشابه
Subgroups of Finite Index in Profinite Groups
One way to view Theorem 1.1 is as a statement that the algebraic structure of a finitely generated profinite group somehow also encodes the topological structure. That is, if one wishes to know the open subgroups of a profinite group G, a topological property, one must only consider the subgroups of G of finite index, an algebraic property. As profinite groups are compact topological spaces, an...
متن کاملMaximal Subgroups in Finite and Profinite Groups
We prove that if a finitely generated profinite group G is not generated with positive probability by finitely many random elements, then every finite group F is obtained as a quotient of an open subgroup of G. The proof involves the study of maximal subgroups of profinite groups, as well as techniques from finite permutation groups and finite Chevalley groups. Confirming a conjecture from Ann....
متن کاملCounting the Closed Subgroups of Profinite Groups
The sets of closed and closed-normal subgroups of a profinite group carry a natural profinite topology. Through a combination of algebraic and topological methods the size of these subgroup spaces is calculated, and the spaces partially classified up to homeomorphism.
متن کاملClassifying Spaces of Subgroups of Profinite Groups
The set of all closed subgroups of a profinite carries a natural profinite topology. This space of subgroups can be classified up to homeomorphism in many cases, and tight bounds placed on its complexity as expressed by its scattered height.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2021.01.032