On Fourth Order Centered Difference Scheme for Linear SPBVPs
نویسندگان
چکیده
منابع مشابه
A fourth-order finite difference scheme for the numerical solution of 1D linear hyperbolic equation
In this paper, a high-order and unconditionally stable difference method is proposed for the numerical solution of onespace dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivative of this equation and a Padé approximation of fifth-order for the resulting system of ordinary differential equations. It is shown ...
متن کاملA fourth-order compact difference scheme on face centered cubic grids with multigrid method for solving 2D convection diffusion equation
We present a fourth-order compact finite difference scheme on the face centered cubic (FCC) grids for the numerical solution of the two-dimensional convection diffusion equation. The seven-point formula is defined on a regular hexagon, where the strategy of directional derivative is employed to make the derivation procedure straightforward, efficient, and concise. A corresponding multigrid meth...
متن کاملA Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملA Fourth Order Difference Scheme for the Maxwell Equations on Yee Grid
The Maxwell equations are solved by a long-stencil fourth order finite difference method over a Yee grid, in which different physical variables are located at staggered mesh points. A careful treatment of the numerical values near the boundary is introduced, which in turn leads to a “symmetric image” formula at the “ghost” grid points. Such a symmetric formula assures the stability of the bound...
متن کاملA compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation
This work extends the previous two-dimensional compact scheme for the Cahn–Hilliard equation (Lee et al., 2014) to three-dimensional space. The proposed scheme, derived by combining a compact formula and a linearly stabilized splitting scheme, has second-order accuracy in time and fourth-order accuracy in space. The discrete system is conservative and practically stable. We also implement the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Research and Technology
سال: 2020
ISSN: 0974-3154
DOI: 10.37624/ijert/13.2.2020.364-367