On Generalizations of Projective QTAG-Modules
نویسندگان
چکیده
In this manuscript, we define the class of ω 1 -weakly id="M2"> α -projective QTAG-modules for infinite ordinal id="M3"> and provide its systematic study finite ordinal. Furthermore, generalize to id="M4"> . 2 + n modules obtain some characterizations. We also id="M5"> -totally weak id="M6"> under formation id="M7"> -bijections.
منابع مشابه
On two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective
Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...
متن کاملOn Some QTAG-Modules
In this paper we study totally projective QTAG-modules and the extensions of bounded QTAG-modules. In the first section we study totally projective modules M/N and M ′/N ′ where N , N ′ are isomorphic nice submodules of M and M ′ respectively. In fact the height preserving isomorphism between nice submodules is extented to the isomorphism from M onto M ′ with the help of Ulm-Kaplansky invariant...
متن کاملon two generalizations of semi-projective modules: sgq-projective and $pi$-semi-projective
let $r$ be a ring and $m$ a right $r$-module with $s=end_r(m)$. a module $m$ is called semi-projective if for any epimorphism $f:mrightarrow n$, where $n$ is a submodule of $m$, and for any homomorphism $g: mrightarrow n$, there exists $h:mrightarrow m$ such that $fh=g$. in this paper, we study sgq-projective and$pi$-semi-projective modules as two generalizations of semi-projective modules. a m...
متن کاملON PROJECTIVE L- MODULES
The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...
متن کاملOn Almost n-Layered QTAG-modules
We define the notion of almost $n$-layered $QTAG$-modules and study their basic properties. One of the main result is that almost 1-layered modules are almost $(omega+1)$-projective exactly when they are almost direct sum of countably generated modules of length less than or equal to $(omega+1)$. Some other characterizations of this new class are also established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2023
ISSN: ['2314-4785', '2314-4629']
DOI: https://doi.org/10.1155/2023/3175455