On GO-compact spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On αψ –Compact Spaces

The objective of this paper is to obtain the properties of αψcompact spaces by using nets, filterbase, αψ-complete accumulation points and so on. We also investigate some properties of αψ-continuous multifunctions and αψ-compact spaces in the context of multifunction.

متن کامل

On function spaces of Corson-compact spaces

We apply elementary substructures to characterize the space Cp(X) for Corsoncompact spaces. As a result, we prove that a compact space X is Corson-compact, if Cp(X) can be represented as a continuous image of a closed subspace of (Lτ ) × Z, where Z is compact and Lτ denotes the canonical Lindelöf space of cardinality τ with one non-isolated point. This answers a question of Archangelskij [2].

متن کامل

Compact operators on Banach spaces

In this note I prove several things about compact linear operators from one Banach space to another, especially from a Banach space to itself. Some of these may things be simpler to prove for compact operators on a Hilbert space, but since often in analysis we deal with compact operators from one Banach space to another, such as from a Sobolev space to an L space, and since the proofs here are ...

متن کامل

Lipschitz Spaces on Compact Manifolds

Let f be a bounded function on the real line IF!. One may characterize the structural properties off by the modulus of smoothness w(t,f) = sup{lf (4 -f( y)l; x, y E 08, I x y I < t>, and, if w(t) is a continuous nondecreasing function of t > 0 such that w(O) = 0, by the Lipschitz class Lip(w) which is the set of all continuous functions such that su~~<~<i w(t, f)/o(t) < 00. It is possible to ex...

متن کامل

On Lowen's fuzzy compact spaces

In this paper, we obtain an axiomatic characterization of Lowen's fuzzy compactness. KeywordsMathematics, fuzzy sets, Topology, Lowen's compactness, operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2008

ISSN: 0354-5180

DOI: 10.2298/fil0801045c