On graph-restrictive permutation groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the tenacity of cycle permutation graph

A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation graphs.

متن کامل

Permutation groups and the graph isomorphism problem

In this article, we discuss various algorithms for permutation group theoretic problems and study its close connection to the graph isomorphism problem. Motivated by this close connection, the last part of this article explores the group representability problem and mention some open problems that arise in this context.

متن کامل

on the tenacity of cycle permutation graph

a special class of cubic graphs are the cycle permutation graphs. a cycle permutation graph pn( α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.in this paper we determine a good upper bound for tenacity of cycle permutation graphs.

متن کامل

On Transitive Permutation Groups

We assign names and new generators to the transitive groups of degree up to 15, reflecting their structure.

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2012

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2011.11.006