On Height Orthogonality in Normed Linear Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Range and Orthogonality in Normed Spaces

Introducing the concept of the normalized duality mapping on normed linear space and normed algebra, we extend the usual definitions of the numerical range from one operator to two operators. In this note we study the convexity of these types of numerical ranges in normed algebras and linear spaces. We establish some Birkhoff-James orthogonality results in terms of the algebra numerical range V...

متن کامل

Remotality and proximinality in normed linear spaces

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

متن کامل

On co-Farthest Points in Normed Linear Spaces

In this paper, we consider the concepts co-farthest points innormed linear spaces. At first, we define farthest points, farthest orthogonalityin normed linear spaces. Then we define co-farthest points, co-remotal sets,co-uniquely sets and co-farthest maps. We shall prove some theorems aboutco-farthest points, co-remotal sets. We obtain a necessary and coecient conditions...

متن کامل

Minimizing Functionals on Normed - linear Spaces

This paper extends results of [1], [2], of Goldstein, and [3] of Vainberg concerning steepest descent and related topics. An example Is given taken from a simple rendezvous problem in control theory. The problem is one of minimizing a norm on an affine subspace. The problem here is solved in the primal. A solution in the dual is given by Neustadt [4]. I. GENERATION OF MINIMIZING SEQUENCES Let E...

متن کامل

Partial Differentiation on Normed Linear Spaces Rn

Let i, n be elements of N. The functor proj(i, n) yielding a function from Rn into R is defined by: (Def. 1) For every element x of Rn holds (proj(i, n))(x) = x(i). Next we state two propositions: (1) dom proj(1, 1) = R1 and rng proj(1, 1) = R and for every element x of R holds (proj(1, 1))(〈x〉) = x and (proj(1, 1))−1(x) = 〈x〉. (2)(i) (proj(1, 1))−1 is a function from R into R1, (ii) (proj(1, 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1999

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181070401