On Inconsistent $M$-Estimators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On M-estimators and normal quantiles

Sydney, NSW 2109, Australia Abstract This paper explores a class of robust estimators of normal quantiles filling the gap between maximum likelihood estimators and empirical quantiles. Our estimators are linear combinations of M-estimators. Their asymptotic variances can be arbitrarily close to variances of the maximum likelihood estimators. Compared with empirical quantiles, the new estimators...

متن کامل

A Geometric View on Constrained M -Estimators

We study the estimation error of constrained M -estimators, and derive explicit upper bounds on the expected estimation error determined by the Gaussian width of the constraint set. Both of the cases where the true parameter is on the boundary of the constraint set (matched constraint), and where the true parameter is strictly in the constraint set (mismatched constraint) are considered. For bo...

متن کامل

Differentially Private M-Estimators

This paper studies privacy preserving M-estimators using perturbed histograms. The proposed approach allows the release of a wide class of M-estimators with both differential privacy and statistical utility without knowing a priori the particular inference procedure. The performance of the proposed method is demonstrated through a careful study of the convergence rates. A practical algorithm is...

متن کامل

Projection Based M-Estimators

Random Sample Consensus (RANSAC) is the most widely used robust regression algorithm in computer vision. However, RANSAC has a few drawbacks which make it difficult to use for practical applications. Some of these problems have been addressed through improved sampling algorithms or better cost functions, but an important difficulty still remains. The algorithm is not user independent, and requi...

متن کامل

Redescending M -estimators

In finite sample studies redescending M -estimators outperform bounded M -estimators (see for example, Andrews et al., 1972). Even though redescenders arise naturally out of the maximum likelihood approach if one uses very heavy-tailed models, the commonly used redescenders have been derived from purely heuristic considerations. Using a recent approach proposed by Shurygin, we studied the optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1982

ISSN: 0090-5364

DOI: 10.1214/aos/1176345786